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The interpolating matrix method (IMM) is proposed as a finite difference method 
applicable to the arbitrary arrangement of mesh points. In the IMM, differential coefficients at 
a mesh point are expressed with linear combinations of a certain number of neighboring mesh 
points. A dilference equation is easily constructed by substituting the linear combinations 
individually into the differential coefficients of the differential equation. A computer code for 
two-dimensional, incompressible, turbulent flows has been developed and some calculation 
examples are presented to demonstrate the utility of the IMM. Q 1988 Academic Press. Inc. 

1. INTRODUCTION 

In order to make the finite difference method more useful for practical engineer- 
ing problems, the technique to treat arbitrary geometry should be developed. Since 
the MAC method [l] was devised, the cell type difference calculation has become a 
standard for incompressible flows and has been widely applied to engineering 
problems as in [2]. The cell type method with the staggered arrangement of 
variables is powerful to the incompressible fluids but inherently difficult to handle 
complex geometries. The finite element method is also a cell type method but easily 
applicable to arbitrary geometry. For instance, incompressible turbulent flows are 
analyzed in [3], compressible flows in [4-51. The MAC type arrangement of 
variables is also used in the finite element method as in [6]. In the present paper, 
the interpolating matrix method (IMM) is proposed as a new grid type difference 
method which is generalized for the mesh arrangement. The IMM presents the 
technique to obtain difference equations at arbitrarily located mesh points. Ideas in 
the finite element method, interpolation function and isoparametric transformation, 
are incorporated in the IMM. Accordingly the IMM has a potential for analyzing 
arbitrary geometry as the finite element method. 

There have been some approaches to handle the complex geometries in the 
methods for fluid flow calculation. One of them is the arbitrary 
LagrangianEulerian (ALE) method [7-S]. The ALE method is cell type and the 
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variables are located the same way as in the finite element method. therefore it is 
rather considered as a special case of the finite element method. Some of the 
differential equations used in the ALE method are specially made for the fluid 
dynamics, e.g., veiocity divergence. 

Another widely used technique is the boundary-fitted grid generation method as 
reviewed in [S]. A curvilinear grid is generated so that the curved boundaries are 
fitted to the grid. The curvilinear grid in the Cartesian coordinate system is trans- 
formed to a rectangular grid in the curvilinear coordinate system. The coarseness of 
the grid can be controlled, for example, using the method developed by Thompson 
er a/. [ lo]. Differential equations in the Cartesian coordinate system transformed to 
those in the curvilinear coordinate system, and discretized to the difference 
equations. This technique is widely used both for the compressible flow [l l] and 
for the incompressible flow [12-131. 

In the IMM, differential coefficients at the mesh points are expressed with linear 
combinations of a certain number of neighboring mesh points, even though the 
mesh points are arbitrarily located. The fundamental idea of the IMM is described 
as a primitive version and discussed in comparison with the ALE and the boun- 
dary-fitted grid generation method in Subsection 2.1. The primitive I 
improved with respect to numerical stability by incorporating the isoparametric 
transformation technique in Subsection 2.2. A code for two-dimensional. incom- 
pressible, turbulent flows is described and the utility of the IMM is demonstrated 
by four examples in Section 3. The standard k-c model [ 141 is used as the tar- 
bulence model in the code. 

2. INTERPOLATING MATRIX METHOD (TMM) 

2: I. Expression of Differences Iz+th the Interpolating Matrix 

Where a field of the Cartesian space is discretized to finite points as shown in 
Fig. 1, a physical quantity, which has infinite degrees of freedom in the continuous 
field, is represented with finite values defined at mesh points. A differential equation 
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FIG. 1. Arbitrary arrangement of mesh points. 
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is rewritten to a difference equation which expresses a relation among the values at 
the mesh points. In the IMM, such a difference equation can be easily obtained in 
the arbitrary arrangement of mesh points. Differential coefficients at a mesh point 
are expressed with linear combinations of a certain number of neighboring mesh 
points. A difference equation is constructed by substituting the linear combinations 
individually into the differential coefficients of the differential equation. 

Suppose that the physical quantity IJ~ is approximated in the neighborhood of a 
mesh point P by the following polynomial, 

4(x)= i GFk(X). (1) 
k=O 

The physical quantity is represented by n + 1 terms of C,‘F,Jx), where C,P is the 
coefficient multiplied to the kth function Fk(x) which depends on the coordinates x. 
For each mesh point, the functions of the polynomial are set common but the coef- 
ficients depend on the mesh point. The differential coefficients in the neighborhood 
of the point P are obtained by differentiating Eq. ( 1) as, 

(2) 

In order to determine all the values of the rz + 1 coefficients in Eq. (1), we need 
n + 1 relations between the values of the quantity and the coordinates. When the 
approximate polynomial Eq. (1) is applied to the n + 1 mesh points, including the n 
neighboring points, the following constraint equation is obtained, 

@(P)=A(P)-C(P), (3) 

where 

c: 
CP 

) i.1 
C(P)= . 

c.p 

The first row of Eq. (3) is obtained by subsituting the coordinates of the point P 
into the polynomial. The first neighboring point NP, forms the second row in the 
same way, and so on to obtain Eq. (3). Here, the vector <D(P) consists of the n + 1 
values of the physical quantity, and the matrix A(P) depends on coordinates of the 
n + 1 mesh points. It is important that Eq. (3) can be constructed for any 
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arrangement of mesh point. Evaluating the inverse matrix of A(P), the following 
equation is obtained: 

C(P) = M,(P) .@(P). f L * 
M,(P) E A--‘(P). 

i+) 

In Eq, (4), the coefficients of the polynomial are presented by linear combinations 
of (D(P). 

The differential coefficients of the physical quantity at the mesh point P are 
obtained by differentiating the approximate polynomial, as in Eq. (2), and sub- 
stituting the coordinates of P, which is rearranged to the following vector-matrix 
form. 

D(P) = M,, .C(P), is: 

where D(P) is the column vector of the n + 1 differential coefftcients. The matrix 
M C+D only depends on the functions of the polynomial, as shown in the right- 
hand side of Eq. (2). Substituting Eq. (4) into Eq. (5) the relation 

D(P)=M,(P).Q(P), (6, 

is obtained, where the matrix M,(P) is written as 

M,(P) = M,+ .M,(P). (7) 

Each row of the right-hand side of Eq. (6) expresses a linear combination according 
to the differential coefficient in the same row of the left-hand side. The matrix 
M,(P) is defined as the interpolating matrix here. The matrices M,(P) of all the 
mesh points can be evaluated when the approximate polynomial and the coor- 
dinates of the mesh points are given and the necessary numbers of the neighboring 
points are assigned to all the mesh points. 

One of the advantages of the IMM is that a difference equation can easily be 
obtained for the arbitrary arrangement of the mesh points. We must give various 
difference equations to various arrangements. In the IMM, keeping the number of 
neighboring mesh points constant and applying the same approximate polynomial, 
we can construct various difference equations with the same procedure. Another 
advantage is that difference forms of differential coefficients are individually 
evaluated and stored as an interpolating matrix. Accordingly any differential 
equation can be transformed systematically to a difference equation by substituting 
the elements of the interpolating matrix into the differential coefficients. This also 
makes programming very easy to write and read. 

Other difference methods applicable to the complex geometries have been 
developed: the arbitrary Lagrangian-Eulerian (ALE) method and the boundary-fit- 
ted grid generation method. The ALE method [7] is a cell type difference method 
and has already been applied to many problems of fluid dynamics [g]. However, 
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the ALE method does not have generality for differencing because some of the dif- 
ference equations are heuristically introduced or specially made for fluid dynamics, 
e.g., velocity divergence. On the other hand, the IMM has generality as a grid type 
finite difference method. 

The boundary-fitted grid generation method [9-131 is also widely used for the 
complex geometries and looks similar to the IMM, particularly the improved IMM 
described in the next subsection. But the main objectives of the two are different. In 
the boundary-fitted grid generation method, the main objective is how the boun- 
dary-fitted grid can automatically be formed and how the coarseness of the grid can 
be controlled. For example, Thompson et al. [lo] adopt Poisson equations with 
source terms for the grid generation and control. The main calculation, e.g., for 
fluid flows, is performed after grid generation. A differential equation in the Car- 
tesian coordinate system is transformed to that in the curvilinear coordinate system, 
where the curvilinear grid is transformed to the rectangular one. Then the differen- 
tial equation in the transformed plane can be discretized on the rectangular grid by 
the usual finite difference method though the differential equation is a little com- 
plicated from the coordinate transformation. In the IMM, the differential coef- 
ficients in the Cartesian space are estimated at each mesh point by Eq. (7), then the 
differential equation is directly transformed to a difference equation. The IMM is a 
new differencing method and contains nothing about the grid generation technique. 
In other words, the IMM can be used in the grid generation calculation. It is 
demonstrated in the fourth example in Section 3 that the grid is formed with 
the Poisson equations; it is a standard technique of the grid generation, whose 
difference forms are evaluated by the IMM. 

The IMM should instead be compared with the finite element method. First, 
characteristics common to the IMM and the finite element method are described. 
Arrangement of the mesh points can arbitrarily be located and the discretized 
equation is locally obtained. Both methods require an approximate function which 
has as same number of coefficients as that of the mesh points neighbored in the 
IMM and belonging to an element in the finite element method, respectively. For 
complex geometries the isoparametric transformation can be incorporated in both 
methods as described in the following subsection. A point of difference of the two is 
how the approximate function is applied. In the IMM, the neighborhood of a mesh 
point is ambiguously approximated with the function, which is equivalent to a 
Taylor expansion. Therefore the number of mesh points related in every difference 
equation keeps constant. It is a good property to solve a matrix equation. In the 
finite element method, an element is approximated with the function. Therefore the 
number of mesh points related depends on the combination of the elements. 

2.2. Incorporation of the Coordinate Trunsformation Technique 

The coordinate transformation technique is often used to analyze complex 
geometries in the fluid flow calculation. The method developed by Thompson et al. 
[lo] makes use of the Poisson equations to lit the curvilinear grid to the arbitrarily 
shaped boundaries. Their method is equivalent to solving the thermal conduction 
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problem. Though it is possible without the coordinate transformation technique for 
the IMM to construct difference equations as shown in the previous subsection, the 
IMM can be improved by incorporating the technique. The improved TM 
acquires the better characteristics of the numerical stability. 

We define the coordinates of the physical plane as +‘ci and those of the transfor- 
med plane as ti. A transformed plane is given to each mesh point so that the 
neighboring points have a certain arrangement as shown in Fig. 2. The approximate 
polynomial Eq. (1) is here defined in the transformed plane. By means of the 
previous subsection, the interpolating matrix MD: of the ti system is obtained. 

D<(P) = M,:. (I’,(P). (8) 

The interpolating matrix MD: is now independent of mesh point P because the 
arrangement of the neighboring points is set uniquely in the transformed plane. In 
order to obtain the differential coefficients in the physical plane, the transformation 
matrix T, _ ~ is necessary to be introduced as 

D(P)=T,,.(P).D<(f’). (9) 

Using Eqs. (8) and (9), the interpolating matrix M,(P) of the ?ci system is obtained 
as 

M,(P) = T: _ .x(P) MD,. (10) 

The matrix T, _ r must be evaluated for each mesh point which has its own trans- 
formed plane, as each element has its own transformation matrix in the hnite 
element method. The matrix T,, ~ is expressed with the transformation coefficients, 
such as x: or x::, where the subscripts denotes the differentiation at mesh point P,. 
In order to obtain the transformation coefficients, the transformation function 
should be given, as ~~(6) or t,(x). Here the isoparametric transformation idea, 
which is widely used in the finite element method [lS], is introduced. Its original 
concept in the finite element method is that the transformation function is set just 

Y h.Y) Plane il (&Ill plane 

FIG. 2. Coordinate transformation between the physical plane. (x, y), and the transformed plane, 
IL VI. 
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same as the interpolation function delined in each element. According to this idea, 
the coordinates xi are expressed with the same approximate polynomial as Eq. (1): 

k=O 
(11) 

The coefficients in Eq. ( 1 1 ), Cz, are obtained by applying Ec$ (11) to the same 
neighboring points as used for D,(P). Then we can evaluate T, _ X. A two-dimen- 
sional example of the matrices M& and Tt,,(Pj are shown in the Appendix. 

Here we compare the two IMMs, the primitive IMM and the IMM improved by 
the coordinate transformation technique, in a one-dimensional example. We assume 
that a second-order polynomial with three terms, 

(b(x) = co + c,x + c2.x2, (12) 

is used as the approximate polynomial. The coeffkients in Eq. (12) are determined 
by mesh point PO and its two neighboring points P-, and P,. The spatial 
increments PO- Pp L and P, -PO are given by d-, and d ,, respectively. The 
primitive IMM gives the interpolating matrix as 

1 0 0 
Al-A-1 A 

A, A-1 A,(A, ;‘A-,) 
At 

-A-,@,+A-, 

2 2 2 -~ 
A, A-, A,(A,+A-,) A-,(A,+A-,I 

The subscript of the left-hand side of Eq. (13) represents the differentiation at mesh 
point P,. The physical quantity is interpolated as shown in Fig. 3a. 

In the improved IMM, the transformed plane is used where the two neighboring 
points always have the coordinates of - 1 and + 1. The interpolating matrix of the 
t system becomes 

X-l x0 Xl X-l xg Xl 

FIG. 3. Interpolation of the two IMMs: (a) the primitive IMM, (b) the IMM improved by the 
coordinate transformation technique. 
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The transformation matrix Tr _ ,( P j is 

then the interpolating matrix of the x system is 

The transformation coefficients, X; and x<:, are obtained by the isoparameiric 
transformation; using the same matrix as Eq. ( 14) for X: 

Then the physical quantity is interpolated as Fig. 3b. 
The difference form of the first-order differential coefficient is important from the 

viewpoint of the numerical stability in the fluid dynamics. LJsing the primitive 
IMM. the linear combination is written as 

which is same as is used in the SOLA-PTS code [2]. When d 1 = d ~ r, the coef- 
ficient of the do term becomes zero; then the linear combination is just same as the 
central difference. However, when A 1 # A _ I ? the coefficient of #o in Eq. (18) 
remains a non-zero value. In this, more general case, the first-order process, e.g., the 
convention process, can cause a positive feedback at P,: a positive increment of $O 
increases #“--a numerical instability. As shown in Fig. 3a, the slope of the tangent 
at PO is positive when do is larger than the same value of 4 _ I and dr. 

If the modified IMM is used, the linear combination of the first-order coefficient 
will be 

This method keeps the zero feedback scheme because the coefficient of do keeps 
zero in any case, as shown in Eq. (19). When &r and c$, have the same value, the 
slope of the tangent at do remains zero for any do as shown in Fig. 3b. In the view 
of the numerical stability of the fluid flow analysis, the utilization of the coordinate 
transformation technique seems to be better. Hereafter the IM-M in the text means 
this improved version. 
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3. NUMERICAL CALCULATION OF TWO-DIMENSIONAL, 
INCOMPRESSIBLE, TURBULENT FLOWS 

3.1. Outline of the Code 

A code for two-dimensional, incompressible, turbulent flows has been developed 
to demonstrate the utility of the IMM. The flow chart of the code is described in 
Fig. 4. The turbulence is estimated by the standard k-s model recommended by 
Launder and Spalding [14]. Then the following five differential equations are used 
in the code: 

continuity equation: 

au, 
z=O; 

momentum equation: 

turbulent viscosity: 

2 

v,= C,,k; 
E 

transport equation of k: 

$+"j~=$[(t'+~)$] 

+v*$($+&; 

(20) 

(21) 

(22) 

(23) 

FIG. 4. Flow chart of the code for two-dimensional, incompressible, turbulent flows. 
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transport equation of E: 

453 

(24) 

The five empirical constants in the k - E model are give in Table I. 
The algorithm used here is based on the SMAC method [16]. The outline of the 

computation is explained according to the flow chart in Fig. 4. First, in the precon- 
ditioning part in the code, the interpolating matrices are evaluated using the IMM 
at all the mesh points. Next, flow velocities are explicitly calculated from the trans- 
ient momentum equation, Eq. (21), excluding the pressure term, and provisional 
velocities are obtained. The new-time pressure is calculated by a Poisson equation, 
which is constructed from the continuity equation and the pressure term of the 
momentum equation. The provisional velocities are corrected to the new-time 
velocities by the new-time pressure. After the new-time velocities and pressure are 
determined, the two turbulence parameters, k and E, are evaluated with Eqs. (23) 
and (24). The turbulent viscosity v, is calculated from the new k and E. Lastly, some 
auxiliary calculations are performed, which are Ar control, data output control, etc., 
and we go back to the velocity calculation part incrementing the one time mesh. 
Reiterating the same procedure of the time cycle, the flow is transiently analyzed. 

The convection processes in Eqs. (21), (23), and (24) are calculated with the 
FRAM [ 171, which has less numerical diffusion and more stable characteristics. In 
the k--E model, turbulence parameters often drastically change in space and they 
must not be negative because of their physical meanings Particularly for E, a 
negative value leads to a fatal numerical instability through v,. Not to be negative 
where the value drastically changes is a very severe demand on the convection 
schemes. The FRAM is very useful in this case, but the detailed discussion is omit- 
ted here because it is not directly related to the IMM or a generalization of the 
finite difference method. 

The code does not adopt the staggered mesh configuration to treat complex 
geometries easily in the IMM: all the variables, U, V: P, etc., are evaluated at every 
mesh point. It is indicated by Patankar [lg] that such a non-staggered con- 
figuration causes the staggered oscillation of the pressure. However, the oscillation 

TABLE I 

The Values of the Empirical Constants in the k -E Model 
recommended by Launder and Spalding [14] 

CL. CCL Cc? BL cJc 

0.09 1.44 1.92 i.0 1.3 
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can be successfully suppressed by a little modification of the SMAC procedure and 
adequate boundary conditions. They are described in the following subsections. 

The statements of the IMM program are clear as shown in Fig. 5, which 
represents a convection process of E with the two-dimensional Leith differencing 
scheme: 

+ (AtV)* 8’~ 
2@ i’ (25) 

In Fig. 5, the interpolating matrix is denoted by “COEFF( i, j, k),” where the indices 
k,j, and i represent the mesh point number, the differential coefficient type 
(1 -+ 8/8x, 2 -+ ~/JJJ, 3 + 8*/8x2, 4 + a2/ay2), and the neighboring point number, 
respectively. The expression of the interpolating matrix makes the program easy to 
see, though additional memory for the matrices is required. However, the additional 
memory is not so huge because it only requires n proportional capacity, not n2, so 
it is not a fatal disadvantage of the IMM. 

3.2. The Poisson Equation of the Pressure in the Non-staggered Configuration 

As expressed in the previous subsection, the new-time values of the velocity and 
pressure are calculated through the two steps. The procedure used in the present 
research is based on the SMAC [16] and modified to be stable in the non- 
staggered configuration. 

In the first step, the provisional velocity li is calculated in the velocity 
calculation part as 

p = U; + At(convection)” + At(diffusion)“. 

The superscript denotes t he time cycle; then the convection and the diffusion terms 

EN(IJ)=E 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

IJ) 
-DT*UN(IJ)*( 

COEFF(1.1.IJ)*(E(NEIGH(1.IJ))-E(IJ)) 
+COEFF(2.1.IJ)*(E(NEIGH(2.IJ))-EO) 
+COEFF(3.1.IJ)*(E(NEIGH(3.IJ1)-E(IJ)) 
+COEFF(4.1.IJ)*(E(NEIGH(4.IJ))-EO))~ 

-DT*VN(IJ)*( 
COEFF(1.2.IJ)*(E(NEIGH(1.IJ))-E(IJ)) 

+CDEFF(2.2.IJ)r(E(NEIGH(2.IJ)-EIJ)~ 
+COEFF(3.2.IJ)*(E(NEIGH(3.IJ))-E(IJ)) 
+COEFF(4.2.IJ)*(E(NEIGH(4.IJ))-E(IJ))-EIJ)~~ 

EN(IJ)=EN(IJ) 
* +DT*UN(IJ)*DT*UN(IJ)/2.0*( 
* COEFF(l.3.IJ)*(E(NEIGH(l.IJ))-E(IJ)) 
* +COEFF(2.3.IJ)*(E(NEIGH(2.IJ))-E(IJ))-E(IJ)) 
* +COEFF(3.3.IJ)*(E(NEIGH(3.IJ))-E(IJ)) 
* +COEFF(4.3.IJ)*(E(NEIGH(4,IJ))-E(IJ))) 
* +DT*VN(IJ)*DT*VN(IJ)/2.0*( 
* COEFF(1.4.IJ)*(E(NEIGH(1.IJ))-E~IJ)) 
* +COEFF(2.4.IJ)*(E(NEIGH(2.IJ))-E(IJ))-EtIJ)) 
* +COEFF(3.4.1J)*(E(NEIGH(3.IJ))-E(IJ))-E~IJ~~ 
* +COEFF(4.4.IJ)+(E(NEIGH(4.IJ))-E(IJ))) 

FIG. 5. Example of the program using the interpolating matrix. 
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are explicitly calculated in Eq. (26). In the second step, the following two implicit 
equations are used: 

The pressure term is implicitly evaluated and added to the provisional velocity in 
Eq. (27). Equation (28) is the implicit expression of the continuity equation. These 
two equations can be rearranged to 

At c?‘P’ At8’P” i@ --= --- 
p ax: p ax; +yg3 

P n+I=pll+pf, 

(29) 

(30) 

U;+l= 
ArZP”+’ 

ly---. 
p &xl 

Equation (29) represents a Poisson equation of the pressure correction, P’. The 
difference forms of Eq. (29) are also obtained by the stored interpolating matrices 
and calculated with the SOR method. 

The ordinary SMAC method uses the following set, which is a little different from 
that used in this study. In the first step, 

@ = - $ g + At(convection)” + Ar(diffusion)“. 
’ , 

(32) 

The old-time pressure term is included in Eq. (32). In the second step, 

are solved. Three points are different between the ordinary SMAC method and the 
modified one. One is in the first step, where the explicit pressure term is dropped in 
Eq. (26) compared with Eq. (32). The other two are in the second step, Twhere the 
old-time pressure term is added in Eq. (29) and the superscript of the pressure is 
n -t 1 in Eq. (31) compared with Eq. (33) and Eq. (35), respectively. In terms of the 
differential equation set, both procedures are completely equivalent, but in terms of 
the difference forms, they differ. Here -we consider the one-dimensional Poisson 
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/ UJW I w c w , UJ 
i-2 i-l i i+l i+2 i-2 i-l I 1+1 1+2 

FIG. 6. Illustration of the pressure points connected by the difference expression of the Poisson 
equation: (a) the modified SMAC method; (b) the ordinary SMAC method. 

equations as an example. In the modified procedure, the right-hand side of the dif- 
ference form of the Poisson equation, Eq. (29 j, at mesh point i consists of P;_ 1, P;, 

p:+t, D,-,, and 8,+i. On the other hand, in the ordinary SMAC procedure, the 
difference equation presents the relation between Dip i and n,+ i in Eq. (33) then 
p:-,, pq, p;, 2, through Eq. (32). Figure 6 describes the old-time pressures which 
affect the right-hand side of the Poisson equations of both procedures. It is 
reasonable for the ordinary SMAC procedure that the staggered oscillation of the 
pressure emerges because the Poisson equation is evaluated from alternate 
pressures. However, in the modified procedure, the staggered oscillation can be 
suppressed because the neighboring pressures are connected in the equation. 

The effect of the modification is shown in Figs. 12 and 13. Figure 13 is the result 
of pressure profile using the ordinary SMAC procedure, and Fig. 12 is that of the 
modified procedure. These figures show that the wiggly characteristic of the 
ordinary SMAC method is removed by the modified procedure. 

3.3. Boundary Conditions 

Three types of boundary conditions are explained here. Though there are more 
types prepared in the IMM code, it is enough to specify the main three types, wall, 
symmetry, and inflow boundary as basic. 

An auxiliary coordinate system (x’, JV’) is inserted into the two coordinate 
systems, the physical plane (x, y) and the transformed plane (<, v]). Since boundary 
conditions of the flow velocity are always given as tangential and normal com- 
ponents to the boundary lines, the auxiliary system is introduced to calculate the 
velocity with such components at the boundary mesh points. The physical plane is 
rotated so that the y’-component of the velocity would be zero in the boundary 
condition, as shown in Fig. 7. Accordingly the Y-axis is set on the boundary line for 

FIG. 7. Coordinate transformation at the boundary mesh point. The auxiliary plane (x’, ~1’) is 
formed by rotating the physical plane.. 
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the wall and symmetry boundaries, and the y’-axis is set on the boundary line for 
the inflow boundary. The interpolating matrix is evaluated in the auxiliary plane 
and the calculation is always performed there at the boundary mesh points. The 
transformation coefficients are evaluated between the physical plane and the 
auxiliary plane and used to transform the flow velocity components. In order to use 
the flow velocity of an inner point for the calculation of the boundary point, the 
velocity components in the physical plane are transformed to those in the auxiliary 
plane. And in order to use the flow velocity of a boundary point for the calculation 
of the inner point, the components are reverse transformed. 

At the boundary point whose type is one of the main three, one equation is given 
for each physical quantity as the boundary condition. Accordingly we have to 
diminish one neighboring point assigned to make the approximate polynomial lose 
one degree of freedom. In the present code, one neighboring point is reduced in the 
input data, but the reduced point is taken into consideration as the imaginary point 
in order to use same programs with respect to the interpolating matrix. The main 
three boundary conditions are specified in the following individually. 

[a] dl/aD. Three neighboring points, NP,, NP,, and NP, are required to be 
assigned, and NP, is considered as the imaginary point, as shown in Fig. 7. The 
auxiliary plane is determined to make the arrangement of the neighboring poinrs as 

y; = y;. 134: 

Equation (34) means that curved walls are permitted and the slope of the boundary 
line is fitted to the Y-axis at the boundary point in the auxiliary plane. The coor- 
dinates of the imaginary point are given as 

When the physical quantity 4 fills the Neumann condition 

the value at the imaginary point is given as 

&l=dlt. (39) 

Since Eq. (38) is often used for various physical quantities as the boundary con- 
dition, the interpolating matrices at the boundary points, including other types of 
boundaries, are prepared using Eqs. (37) and (39). Equation (39) is realized by 
setting the mesh number of NP, the same as that of NP, in the program; the value 
of NP, is given in the calculation where the value of NP, is required. Therefore we 
do not need “IF” branches in terms of the boundary types. 
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For the normal component of the flow velocity V’, the value is set to zero. (The 
auxiliary plane is defined to do so.) The wall function method in [14] is used for 
the other quantities: U’, k, and E. We assume that the universal logarithmic law can 
be always applied in the region close to the wall, and that the wall boundary point 
is located a small length y, distant from the wall. The boundary condition [ 141 is 
given as 

k,=-j$ 
ue3 

&p=-, 
VP 

(41) 

(42) 

where K and C, are the constants in the logarithmic law and U* is the friction 
velocity. Here the constants are given as K = 4.0 and C, = 5.5. The following steps 
are taken in the code: 

(1) The tangential velocity Up is calculated with the Neumann condition 
and the viscous force to the wall calculated from the universal logarithmic law, 
Eq. (40). If there were no viscous force to the wall, the calculation would be just 
equivalent to that of the free-slip condition. 

(2) The advanced-time value of the friction velocity U* is obtained from 
VP and Eq. (40). But Eq. (40) is nonlinear so the relation between U* and Up is 
first calculated in the preconditioning part for some values of vl, by the Newton 
Raphson iteration method and stored in memory. The required U* for the given ul, 
is evaluated by linear interpolation of the stored data of the relation. 

(3) The turbulence parameters kp and E, are calculated from U* using 
Eqs. (41) and (42), respectively. 

[b] Sj~mmetry. Three neighboring points, NP2, NP,, and NP,, are required. 
The symmetric line, NP, - NP,, must be straight: 

y; = y; = 0. (43) 

For the imaginary point NP,, the same equations are used as at the wall boundary 
point, Eqs. (37) and (39). The physical quantities filling Eq. (38) are the pressure P, 
the tangential velocity u’, and the turbulence parameters k and E at the symmetric 
boundary. The normal velocity v’ is set zero. 

[c] rrj7ow~. In the present code, both inflow boundary points and outflow 
boundary points use the same inflow boundary condition. The three neighboring 



INTERPOLATING MATRIX METHOD 459 

points NP,, NP, are assigned and NP, is at this boundary point. The boundary 
line NP,-NP, must be straight. The point NP, is the imaginary point defined as 

We need six conditions here. Three are fixed. For the normaf velocity U’, 

is always imposed. Zero is given to the tangential veiocity V’. For the pressure, 

is used. The condition i?P/dn = 0 is often seen, but the pressure gradient should not 
be zero because the drag force from the flow velocity gradient should be counter- 
balanced by the pressure gradient force. Equation (46) is reasonable also from the 
Poisson equation of the pressure to make the velocity divergence zero. We have 
choices for the other three conditions. One is the Dirichlet condition of either P or 
U’. The other two are k and E which can be chosen from Neumann type or 
Dirichlet type individually. 

According to the selection of P or u’ as the Dirichlet condition, the procedure is 
changed. When the Dirichlet condition of U is chosen, the following steps are 
taken: 

(1) The provisional velocity oM, is calculated using Eq. (45) in the ve!ocity 
calculation part. 

(2) In the calculation of the Poisson equation of pressure, a Neumann 
condition dP/Sn = 0 is provisionally set at the boundary point. It is just equivalent 
to the wall boundary conditions in order not to modify the inflow velocity pb;-. 

(3) P>,T” . 1s calculated using Eqs. (31) and (46) such that oLFJ is modified to 
U’;;t i which equals the value given as the Neumann condition. 

When the Dirichlet condition of P is given: 

( I ) The provisional velocity cr\+ is calculated using Eq. (45) in the velocity 
calculation part. 

(2) In the calculation of the Poisson equation of the pressure, the Dirichlet 
condition is set. 

(3) 8;,. is corrected to U;,t r using Eqs. (3 1) and (46 ). 

Concerning k and E, the transport equation of the quantity is calculated using 
Eq. (38) when the Neumann condition is selected. 
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TABLE II 

Main Parameters in the Calculation Example 

1 2 3 4 

Mass density [kg/m31 1.166 1.166 1.0 x IO3 1.0 x lo-’ 
Molecular viscosity [m’/s] 1.56 x 1O-5 1.56 x 1O-5 1.0 x 
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LE&Y exp 
Hlshlda-Nagano exp 
Present 

0 i 
1 to too y+ too0 

FIG. 9. Profile of the flow velocity of Example 1 compared with experimental data of kaufer [19]~ 
and Hishida and Nagano [20]. 

FIG. 10. Geometry of Example 2. 
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FIG. 11. Profile of the flow velocity of Exampie 2 
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-1.74 

-4.74 

2.00 

-7.75 
0. 

FIG. 12. Profile of the pressure of Example 2. 

The third example is a simplified upper plenum model of the tank type fast 
breeder reactor. The fluid is water. The geometry is described in Fig. 14, where 
experimental data are obtained by Tanaka et al. [21]. On the inflow boundary, the 
experimental data of the flow velocity, k, and F are given as the Dirichlet boundary 
conditions. The pressure value and the zero gradient of the turbulence parameters 
are given on the outflow boundary. The profiles of the calculated flow velocity is 
shown in Fig. 15. The horizontal component of the calculated flow velocity is com- 

P 

1.54 

--I.95 

-5.45 

-8.94 

0 

k 

FOG. 13. Profile of the pressure when the ordinary SMAC method is used in the IMM. 
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0.05’ 0.58 ‘: 
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FIG. 14. Geometry of Example 3. 

pared with the experimental data in Figs. 16. Though the calculation result 
gradually deviates from the data away from the inflow boundary, they both agree 
well. The cause of the deviation may be that the wall function method is not ade- 
quate as the boundary condition in the stagnated region, and that the grid is too 
coarse for the eddy in the corner. The IMM also shows a good result without any 
special formulation for the nonuniform grid. 

The fourth example is the water flow in a curved channel (Fig. 17). The com- 
putation grid used in this example (Fig. 18) is generated by the boundary-fitted grid 
generation technique on a personal computer. Every differential coefficient emerg- 
ing in the grid generation calculation is transformed to the difference also by the 
IMM. The profiles of the flow velocity and the pressure are shown in Fig. 19 and 
Fig. 20, respectively. 

Though the IMM has the arbitrariness of arrangement of mesh points as 
described in Fig. 1, the examples demonstrated in the present study can be 
calculated also by the boundary&ted coordinate method. It is because the 

FLOW VELOCITY - 0.3078 

PASSED TIME 117.1 165 

PASSED KERATION 8000 

ftlilll 

FIG. 15. Profile of the flow velocity of Example 3. 
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- Calculation 
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x= 25 cm [ cm? i 
d 

Y 
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FIG. 16. Comparison of the horizontal component of the flow velocity between the calculation result 
and the experimental dat of Tanaka et al. [Zl]: (a) 5 cm, (b) 15 cm, (c) 25 cm, (d) 35 cm from the 
inflow boundary. 
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FIG. 17. Geometry of Example 4 

FIG. 18. Computation grid of Example 4. 

approximate polynomial keeps the same form, and the dependency of mesh points 
is not oriented: a mesh point always depends on those that depend on the mesh 
point. The theoretical consideration in Section 2 tells us that there is an 
arbitrariness for the arrangement of mesh points, the dependency among the mesh 
points, the shape of the approximate polynomial, and the method of local coor- 
dinate transformation technique. In the present code, standards are selected for the 
arbitrariness as the first step of the new IMM; the arrangement of mesh points is as 
shown in Fig. 2, the dependency of mesh points is not oriented, the polynomial is 
given by Eq. (47), and the isoparametric transformation is adopted. 

FLOW VELOCITY - 0.4342 

PASSED TIME 91.9291 
PASSED ITERATION 10000 

* _ -T - 7-----T-----~------~_-- 

FIG. 19. Profile of the flow velocity of Example 4. 



466 KOSHIZUKA ET AL. 

FIG. 20. Profile of the pressure of Example 3. 

4. CONCLUSION 

The interpolating matrix method (IMM) has been developed as a new technique 
of the finite difference method for arbitrary geometry. The IMM requires no special 
treatment for curvilinear or nonuniform grids. The isoparametric transformation 
technique can be introduced into the IMM to make the difference schemes more 
stable in the flow calculation. A code for two-dimensional, incompressible, tur- 
bulent fluid flows has been fabricated using the IMM. Though the non-staggered 
arrangement is used in the code, the pressure oscillation is suppressed by a little 
modification of the SMAC procedure. Four examples showed the accurate and 
stable characteristics of the IMM code. 

APPENDIX 

Some principal equations used in the two-dimensional IMM code are presented 
here. Since the improved IMM is used in the code, the transformed plane is 
introduced as Fig. 2 and the approximate polynomial is defined there. The 
polynomial has four terms: 

c4t, vl)-4o=c15 +czr + cd2 + w2, (47) 

where QO presents the value of mesh point P in Fig. 2. To be consistent with Eq. (l), 
one more term cO should be added to the right-hand side of Eq. (47) instead of the 
term do in the left-hand side. Practically, however, it is rather convenient to handle 
Eq. (47). 
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Applying Eq. (47) to the four neighboring points in the transformed plane as 
shown in Fig. 2, Eq. (8 j is obtained as 

where the subscript of I$ denotes the differentiation in the left-hand side and the 
number of the neighboring point in the right-hand side. The interpolating matrix in 
Eq. (48) represents a normal difference form of a square grid with second-order 
accuracy. 

Equation (9 j is expressed as 

The isoparametric transformation [IS] is adopted here; then the variables x, -7 are 
also expressed with Eq. (47). Accordingly the transformation coefficients of .X are 
obtained as 

For J, the same equation is given. The coefficients in the matrix of Eq. (49) arc 
rewritten with those in the left-hand side of Eq. (50): 
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